This post was semi automatically converted from blogdown to Quarto and may contain errors. The original can be found in the archive.
As a football (soccer) data enthusiast, I have always been jealous of the amount of available data for American sports. While much of the interesting football data is proprietary, you can can get virtually anything of interest for the NBA, MLB, NFL or NHL.
I have decided to move away from football for a moment and write a little series on Analyzing NBA player data. The series will go through all the major steps in a data analytic pipeline, such as obtaining, cleaning, exploring and analyzing data, with a rich set of statistics for NBA players.
In this post, we will learn how to scrape relevant data from basketball-reference and how to turn the data into a clean usable data frame.
#used packages
library(tidyverse) # for data wrangling
library(janitor) # for data cleaning
library(rvest) # for web scraping
library(corrplot) # correlation plots
Data Source
basketball-reference offers a big variety of data for the NBA. But it is not only its data richness what makes it our source. It is particularly interesting due to its non-flashy simple format, which is always good if you want to scrape data (“The less fancy a page, the easier to scrape”).
We are specifically interested in the player related stats per season. The list of available seasons on basketball-reference.com can be found here. If you click on a few, you will notice, that the links all have a similar structure. For last years season the link looks like this:
Simply changing the 2017 to 2016 will bring you to the season 2015/16. We will use this insight in the next section to build a powerful scraping function.
If you are familiar enough with scraping, or don’t really care about that part, you can use the ballr
package to get player data.
Scraping Player Data
In this section, we will develop a function which automatically scrapes all available player stats for a season and puts them in a nice format. This is gonna be the very basic structure:
<- function(season){
scrape_stats #scrape
#clean
return(player_stats)
}
If you look at the page of a season, you’ll find a section that contains the six categories Per Game, Totals, Per 36 Minutes, Per 100 Possessions, Advanced
for Player Stats. We here focus on Totals, Per 36 Minutes and Advanced. But the described procedure also works with the other categories. The links to the stats for last season look as follows
- https://www.basketball-reference.com/leagues/NBA_2017_totals.html
- https://www.basketball-reference.com/leagues/NBA_2017_per_minute.html
- https://www.basketball-reference.com/leagues/NBA_2017_advanced.html
So we simply have to append the stats we want to our season link and we are good to go.
Let’s start with getting the total statistics per player. Below is the basic rvest
code to get the html table shown on the page.
<- "https://www.basketball-reference.com/leagues/NBA_2017_totals.html"
url <- url %>%
stats read_html() %>%
html_table() %>%
1]]
.[[
str(stats)
## 'data.frame': 619 obs. of 30 variables:
## $ Rk : chr "1" "2" "2" "2" ...
## $ Player: chr "Alex Abrines" "Quincy Acy" "Quincy Acy" "Quincy Acy" ...
## $ Pos : chr "SG" "PF" "PF" "PF" ...
## $ Age : chr "23" "26" "26" "26" ...
## $ Tm : chr "OKC" "TOT" "DAL" "BRK" ...
## $ G : chr "68" "38" "6" "32" ...
## $ GS : chr "6" "1" "0" "1" ...
## $ MP : chr "1055" "558" "48" "510" ...
## $ FG : chr "134" "70" "5" "65" ...
## $ FGA : chr "341" "170" "17" "153" ...
## $ FG% : chr ".393" ".412" ".294" ".425" ...
## $ 3P : chr "94" "37" "1" "36" ...
## $ 3PA : chr "247" "90" "7" "83" ...
## $ 3P% : chr ".381" ".411" ".143" ".434" ...
## $ 2P : chr "40" "33" "4" "29" ...
## $ 2PA : chr "94" "80" "10" "70" ...
## $ 2P% : chr ".426" ".413" ".400" ".414" ...
## $ eFG% : chr ".531" ".521" ".324" ".542" ...
## $ FT : chr "44" "45" "2" "43" ...
## $ FTA : chr "49" "60" "3" "57" ...
## $ FT% : chr ".898" ".750" ".667" ".754" ...
## $ ORB : chr "18" "20" "2" "18" ...
## $ DRB : chr "68" "95" "6" "89" ...
## $ TRB : chr "86" "115" "8" "107" ...
## $ AST : chr "40" "18" "0" "18" ...
## $ STL : chr "37" "14" "0" "14" ...
## $ BLK : chr "8" "15" "0" "15" ...
## $ TOV : chr "33" "21" "2" "19" ...
## $ PF : chr "114" "67" "9" "58" ...
## $ PTS : chr "406" "222" "13" "209" ...
You will notice that all the columns are in a character format. This is because the html table contains the header every 20 lines. So in the next step, we will get rid of this lines and also use the janitor
package to do some basic cleaning such as fixing the column names. Additionally, we clean the data by turning the stats to numeric variables and NA to 0.
<- stats %>%
stats remove_empty_cols() %>% #if any exist
clean_names() %>% # all column names to lower case and removing "%"
::filter(!player=="Player") %>% #delete headers in data frame
dplyrmutate_at(vars(-c(player,tm,pos)),as.numeric) %>% #turn all stat cols to numeric
mutate_at(vars(-c(player,tm,pos)), funs(replace(., is.na(.), 0))) %>% #turn NA to 0
as_tibble()
str(stats)
## Classes 'tbl_df', 'tbl' and 'data.frame': 595 obs. of 30 variables:
## $ rk : num 1 2 2 2 3 4 5 6 7 8 ...
## $ player : chr "Alex Abrines" "Quincy Acy" "Quincy Acy" "Quincy Acy" ...
## $ pos : chr "SG" "PF" "PF" "PF" ...
## $ age : num 23 26 26 26 23 31 28 28 31 27 ...
## $ tm : chr "OKC" "TOT" "DAL" "BRK" ...
## $ g : num 68 38 6 32 80 61 39 62 72 61 ...
## $ gs : num 6 1 0 1 80 45 15 0 72 5 ...
## $ mp : num 1055 558 48 510 2389 ...
## $ fg : num 134 70 5 65 374 185 89 45 500 77 ...
## $ fga : num 341 170 17 153 655 ...
## $ fgpercent : num 0.393 0.412 0.294 0.425 0.571 0.44 0.5 0.523 0.477 0.458 ...
## $ x3p : num 94 37 1 36 0 62 0 0 23 0 ...
## $ x3pa : num 247 90 7 83 1 151 4 0 56 1 ...
## $ x3ppercent: num 0.381 0.411 0.143 0.434 0 0.411 0 0 0.411 0 ...
## $ x2p : num 40 33 4 29 374 123 89 45 477 77 ...
## $ x2pa : num 94 80 10 70 654 269 174 86 993 167 ...
## $ x2ppercent: num 0.426 0.413 0.4 0.414 0.572 0.457 0.511 0.523 0.48 0.461 ...
## $ efgpercent: num 0.531 0.521 0.324 0.542 0.571 0.514 0.5 0.523 0.488 0.458 ...
## $ ft : num 44 45 2 43 157 83 29 15 220 23 ...
## $ fta : num 49 60 3 57 257 93 40 22 271 33 ...
## $ ftpercent : num 0.898 0.75 0.667 0.754 0.611 0.892 0.725 0.682 0.812 0.697 ...
## $ orb : num 18 20 2 18 281 9 46 51 172 105 ...
## $ drb : num 68 95 6 89 332 116 131 107 351 114 ...
## $ trb : num 86 115 8 107 613 125 177 158 523 219 ...
## $ ast : num 40 18 0 18 86 78 12 25 139 57 ...
## $ stl : num 37 14 0 14 89 21 20 25 46 18 ...
## $ blk : num 8 15 0 15 78 6 22 23 88 24 ...
## $ tov : num 33 21 2 19 146 42 31 17 98 29 ...
## $ pf : num 114 67 9 58 195 104 77 85 158 78 ...
## $ pts : num 406 222 13 209 905 ...
Now we have a relatively clean stats table. If you examine it carefully, you will notice that some players occur several times, namely those that switched Franchises. We will only keep their total statistics so we can do a simple slicing.
<- stats %>%
stats group_by(player) %>%
slice(1) %>%
ungroup()
And we are done. Now we wrap all these steps into our function to obtain the total stats for any given season, making use of the simple link structure.
<- function(season = 2017){
scrape_stats #scrape
<- paste0("https://www.basketball-reference.com/leagues/NBA_",season,"_totals.html")
url <- url %>%
stats_tot read_html() %>%
html_table() %>%
1]]
.[[
#clean
<- stats_tot %>%
player_stats remove_empty_cols() %>%
clean_names() %>%
::filter(!player=="Player") %>%
dplyrmutate_at(vars(-c(player,tm,pos)),as.numeric) %>%
mutate_at(vars(-c(player,tm,pos)), funs(replace(., is.na(.), 0))) %>%
as_tibble() %>%
group_by(player) %>%
slice(1) %>%
ungroup() %>%
select(-rk)
return(player_stats)
}
That’s some major piping going on there. Notice that I added one more line to delete the column rk, which we do not need.
We can test the function using a different season.
scrape_stats(season = 2012)
## # A tibble: 478 x 30
## rk player pos age tm g gs mp fg fga fgper…
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 357 A.J. Price PG 25.0 IND 44.0 1.00 568 59.0 174 0.339
## 2 177 Aaron Gray C 27.0 TOR 49.0 40.0 813 83.0 161 0.516
## 3 191 Al Harrin… PF 31.0 DEN 64.0 1.00 1761 345 773 0.446
## 4 216 Al Horford C 25.0 ATL 11.0 11.0 348 57.0 103 0.553
## 5 236 Al Jeffer… C 27.0 UTA 61.0 61.0 2075 516 1048 0.492
## 6 11.0 Al-Farouq… SF 21.0 NOH 66.0 21.0 1477 150 365 0.411
## 7 14.0 Alan Ande… SF 29.0 TOR 17.0 12.0 461 55.0 142 0.387
## 8 70.0 Alec Burks SG 20.0 UTA 59.0 0 939 153 357 0.429
## 9 164 Alonzo Gee SG 24.0 CLE 63.0 31.0 1827 227 551 0.412
## 10 407 Amar'e St… PF 29.0 NYK 47.0 47.0 1543 316 654 0.483
## # ... with 468 more rows, and 19 more variables: x3p <dbl>, x3pa <dbl>,
## # x3ppercent <dbl>, x2p <dbl>, x2pa <dbl>, x2ppercent <dbl>,
## # efgpercent <dbl>, ft <dbl>, fta <dbl>, ftpercent <dbl>, orb <dbl>,
## # drb <dbl>, trb <dbl>, ast <dbl>, stl <dbl>, blk <dbl>, tov <dbl>,
## # pf <dbl>, pts <dbl>
Works perfectly!
Now we want to include the additional per minute and advanced stats. The procedure is very much the same as for the totals. The only thing we have to check is that we do not produce columns with duplicated names, since especially the per minute stats are essential the total stats broken down to 36 minutes. We use the rename_at()
function to append “_pm” to all columns containing stats to differentiate them from the total stats.
<- "https://www.basketball-reference.com/leagues/NBA_2017_per_minute.html"
url <- url %>%
stats read_html() %>%
html_table() %>%
1]]
.[[
<- stats %>%
stats_pm remove_empty_cols() %>%
clean_names() %>%
::filter(!player=="Player") %>%
dplyrmutate_at(vars(-c(player,tm,pos)),as.numeric) %>%
mutate_at(vars(-c(player,tm,pos)), funs(replace(., is.na(.), 0))) %>%
as_tibble() %>%
group_by(player) %>%
slice(1) %>%
ungroup() %>%
rename_at(vars(9:29),funs(paste0(.,"_pm")))
For the advanced stats we do not need to alter the names, since they are unique. The below function is now the final version to obtain the desired player data.
<- function(season = 2017){
scrape_stats #total stats
#scrape
<- paste0("https://www.basketball-reference.com/leagues/NBA_",season,"_totals.html")
url <- url %>%
stats_tot read_html() %>%
html_table() %>%
1]]
.[[
#clean
<- stats_tot %>%
player_stats_tot remove_empty_cols() %>%
clean_names() %>%
::filter(!player=="Player") %>%
dplyrmutate_at(vars(-c(player,tm,pos)),as.numeric) %>%
mutate_at(vars(-c(player,tm,pos)), funs(replace(., is.na(.), 0))) %>%
as_tibble() %>%
group_by(player) %>%
slice(1) %>%
ungroup() %>%
select(-rk)
#per minute
<- paste0("https://www.basketball-reference.com/leagues/NBA_",season,"_per_minute.html")
url <- url %>%
stats_pm read_html() %>%
html_table() %>%
1]]
.[[
<- stats_pm %>%
player_stats_pm remove_empty_cols() %>%
clean_names() %>%
::filter(!player=="Player") %>%
dplyrmutate_at(vars(-c(player,tm,pos)),as.numeric) %>%
mutate_at(vars(-c(player,tm,pos)), funs(replace(., is.na(.), 0))) %>%
as_tibble() %>%
group_by(player) %>%
slice(1) %>%
ungroup() %>%
rename_at(vars(9:29),funs(paste0(.,"_pm"))) %>%
select(-rk)
#advanced
<- paste0("https://www.basketball-reference.com/leagues/NBA_",season,"_advanced.html")
url <- url %>%
stats_adv read_html() %>%
html_table() %>%
1]]
.[[
<- stats_adv %>%
player_stats_adv remove_empty_cols() %>%
clean_names() %>%
::filter(!player=="Player") %>%
dplyrmutate_at(vars(-c(player,tm,pos)),as.numeric) %>%
mutate_at(vars(-c(player,tm,pos)), funs(replace(., is.na(.), 0))) %>%
as_tibble() %>%
group_by(player) %>%
slice(1) %>%
ungroup() %>%
select(-rk)
<- full_join(player_stats_tot,player_stats_pm,
player_stats by = c("player", "pos", "age", "tm", "g", "gs", "mp")) %>%
full_join(player_stats_adv,
by = c("player", "pos", "age", "tm", "g", "mp"))
return(player_stats)
}
At the end, we are using full_join()
to merge the three data frames together. If you are unfamiliar with joins I can recommend the chapter on Relational Data (Link) in Hadley’s fantastic book R for Data Science.
Again, test it on a random season.
scrape_stats(2016)
## # A tibble: 476 x 70
## player pos age tm g gs mp fg fga fgpe… x3p
## <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Aaron … PG 31.0 CHI 69.0 0 1108 188 469 0.401 66.0
## 2 Aaron … PF 20.0 ORL 78.0 37.0 1863 274 579 0.473 42.0
## 3 Aaron … SG 21.0 CHO 21.0 0 93.0 5.00 19.0 0.263 3.00
## 4 Adreia… PF 24.0 MIN 52.0 2.00 486 53.0 145 0.366 9.00
## 5 Al Hor… C 29.0 ATL 82.0 82.0 2631 529 1048 0.505 88.0
## 6 Al Jef… C 31.0 CHO 47.0 18.0 1096 245 505 0.485 0
## 7 Al-Far… SF 25.0 POR 82.0 82.0 2341 299 719 0.416 126
## 8 Alan A… SG 33.0 WAS 13.0 0 192 21.0 59.0 0.356 12.0
## 9 Alan W… PF 23.0 PHO 10.0 0 68.0 10.0 24.0 0.417 0
## 10 Alec B… SG 24.0 UTA 31.0 3.00 797 137 334 0.410 32.0
## # ... with 466 more rows, and 59 more variables: x3pa <dbl>,
## # x3ppercent <dbl>, x2p <dbl>, x2pa <dbl>, x2ppercent <dbl>,
## # efgpercent <dbl>, ft <dbl>, fta <dbl>, ftpercent <dbl>, orb <dbl>,
## # drb <dbl>, trb <dbl>, ast <dbl>, stl <dbl>, blk <dbl>, tov <dbl>,
## # pf <dbl>, pts <dbl>, fg_pm <dbl>, fga_pm <dbl>, fgpercent_pm <dbl>,
## # x3p_pm <dbl>, x3pa_pm <dbl>, x3ppercent_pm <dbl>, x2p_pm <dbl>,
## # x2pa_pm <dbl>, x2ppercent_pm <dbl>, ft_pm <dbl>, fta_pm <dbl>,
## # ftpercent_pm <dbl>, orb_pm <dbl>, drb_pm <dbl>, trb_pm <dbl>,
## # ast_pm <dbl>, stl_pm <dbl>, blk_pm <dbl>, tov_pm <dbl>, pf_pm <dbl>,
## # pts_pm <dbl>, per <dbl>, tspercent <dbl>, x3par <dbl>, ftr <dbl>,
## # orbpercent <dbl>, drbpercent <dbl>, trbpercent <dbl>,
## # astpercent <dbl>, stlpercent <dbl>, blkpercent <dbl>,
## # tovpercent <dbl>, usgpercent <dbl>, ows <dbl>, dws <dbl>, ws <dbl>,
## # ws_48 <dbl>, obpm <dbl>, dbpm <dbl>, bpm <dbl>, vorp <dbl>
Now we have a very generic function, which returns as a clean data frame of 70 NBA player statistics for any season.
In the next post, we will use this data to cluster players according to their stats to assign positions to players not based on physical traits such as height, but in terms of their abilities.
Reuse
Citation
@online{schoch2018,
author = {Schoch, David},
title = {Analyzing {NBA} {Player} {Data} {I:} {Getting} {Data}},
date = {2018-03-03},
url = {http://blog.schochastics.net/posts/2018-03-03_analyzing-nba-player-data-i-getting-data},
langid = {en}
}